Distinct structural features of phospholipids differentially determine ethanol sensitivity and basal function of BK channels.

نویسندگان

  • John J Crowley
  • Steven N Treistman
  • Alejandro M Dopico
چکیده

Large conductance Ca2+ -activated K+ (BK) channel activity and its potentiation by ethanol are both critically modulated by bilayer phosphatidylserine (PS), a phospholipid involved in membrane-bound signaling. Whether PS is uniquely required for ethanol to modify channel activity is unknown. Furthermore, the structural determinants in membrane phospholipid molecules that control alcohol action remain to be elucidated. We addressed these questions by reconstituting BK channels from human brain (hslo) into bilayers that contained phospholipids differing in headgroup size, charge, and acyl chain saturation. Data demonstrate that ethanol potentiation of hslo channels is blunted by conical phospholipids but favored by cylindrical phospholipids, independently of phospholipid charge. As found with ethanol action, basal channel activity is higher in bilayers containing cylindrical phospholipids. Basal activity and its ethanol potentiation in bilayers containing phosphatidylcholine, however, are not as robust as in those containing PS. These results are best interpreted as resulting from the relief of bilayer stress caused by inclusion of cylindrical phospholipids, with this relief being synergistically evoked by molecular shape and negative headgroup charge. Present findings suggest that hslo gating structures targeted by ethanol are accessible to sense changes in bilayer stress. In contrast, hslo unitary conductance is significantly higher in bilayers that contain negatively charged phospholipids independently of molecular shape, a result that is likely to be dependent on an interaction between anionic phospholipids and deep channel residues coupled to the selectivity filter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An alcohol-sensing site in the calcium- and voltage-gated, large conductance potassium (BK) channel.

Ethanol alters BK (slo1) channel function leading to perturbation of physiology and behavior. Site(s) and mechanism(s) of ethanol-BK channel interaction are unknown. We demonstrate that ethanol docks onto a water-accessible site that is strategically positioned between the slo1 calcium-sensors and gate. Ethanol only accesses this site in presence of calcium, the BK channel's physiological agoni...

متن کامل

Ethanol Sensitivity and Tolerance of Rat Neuronal BK Channels: A Dissertation

Neuroscience iii ABSTRACT BK channels are well studied targets of acute ethanol action. They play a prominent role in neuronal excitability and have been shown to play a significant role in behavioral ethanol tolerance in invertebrates. The focus of my work centers on the effects of alcohol on the BK channel and comprises studies that examine how subcellular location affects acute ethanol sensi...

متن کامل

Phospholipids as modulators of K(ATP) channels: distinct mechanisms for control of sensitivity to sulphonylureas, K(+) channel openers, and ATP.

Recent work has established membrane phospholipids such as phosphatidylinositol-4,5-bisphosphate (PIP(2)) as potent regulators of K(ATP) channels controlling open probability and ATP sensitivity. We here investigated the effects of phospholipids on the pharmacological properties of cardiac type K(ATP) (Kir6.2/SUR2A) channels. In excised membrane patches K(ATP) channels showed considerable varia...

متن کامل

Putative calcium-binding domains of the Caenorhabditis elegans BK channel are dispensable for intoxication and ethanol activation.

Alcohol modulates the highly conserved, voltage- and calcium-activated potassium (BK) channel, which contributes to alcohol-mediated behaviors in species from worms to humans. Previous studies have shown that the calcium-sensitive domains, RCK1 and the Ca(2+) bowl, are required for ethanol activation of the mammalian BK channel in vitro. In the nematode Caenorhabditis elegans, ethanol activates...

متن کامل

miXED Messages in Ion Channel Modulation

Ion channels are modulated by multiple molecular mechanisms. In this issue of Neuron, Pietrzykowski et al. expand the mechanistic repertoire by demonstrating that ethanol-induced microRNA can modulate the pattern of mRNA splice variants from which BK potassium channels are constructed. Because BK channels are important targets of ethanol, this finding has implications for mechanisms of ethanol ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 68 1  شماره 

صفحات  -

تاریخ انتشار 2005